TensorFlow Serving
Serving a model
To deploy a model we create following resources as illustrated below
- A deployment to deploy the model using TFServing
- A K8s service to create an endpoint a service
- An Istio virtual service to route traffic to the model and expose it through the Istio gateway
- An Istio DestinationRule is for doing traffic splitting.
apiVersion: v1
kind: Service
metadata:
labels:
app: mnist
name: mnist-service
namespace: kubeflow
spec:
ports:
- name: grpc-tf-serving
port: 9000
targetPort: 9000
- name: http-tf-serving
port: 8500
targetPort: 8500
selector:
app: mnist
type: ClusterIP
---
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: mnist
name: mnist-v1
namespace: kubeflow
spec:
selector:
matchLabels:
app: mnist
template:
metadata:
annotations:
sidecar.istio.io/inject: "true"
labels:
app: mnist
version: v1
spec:
containers:
- args:
- --port=9000
- --rest_api_port=8500
- --model_name=mnist
- --model_base_path=YOUR_MODEL
command:
- /usr/bin/tensorflow_model_server
image: tensorflow/serving:1.11.1
imagePullPolicy: IfNotPresent
livenessProbe:
initialDelaySeconds: 30
periodSeconds: 30
tcpSocket:
port: 9000
name: mnist
ports:
- containerPort: 9000
- containerPort: 8500
resources:
limits:
cpu: "4"
memory: 4Gi
requests:
cpu: "1"
memory: 1Gi
volumeMounts:
- mountPath: /var/config/
name: config-volume
volumes:
- configMap:
name: mnist-v1-config
name: config-volume
---
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
labels:
name: mnist-service
namespace: kubeflow
spec:
host: mnist-service
subsets:
- labels:
version: v1
name: v1
---
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
labels:
name: mnist-service
namespace: kubeflow
spec:
gateways:
- kubeflow-gateway
hosts:
- '*'
http:
- match:
- method:
exact: POST
uri:
prefix: /tfserving/models/mnist
rewrite:
uri: /v1/models/mnist:predict
route:
- destination:
host: mnist-service
port:
number: 8500
subset: v1
weight: 100
Referring to the above example, you can customize your deployment by changing the following configurations in the YAML file:
-
In the deployment resource, the
model_base_path
argument points to the model. Change the value to your own model. -
The example contains three configurations for Google Cloud Storage (GCS) access: volumes (secret
user-gcp-sa
), volumeMounts, and env (GOOGLE_APPLICATION_CREDENTIALS). If your model is not at GCS (e.g. using S3 from AWS), See the section below on how to setup access. -
GPU. If you want to use GPU, add
nvidia.com/gpu: 1
in container resources, and use a GPU image, for example:tensorflow/serving:1.11.1-gpu
.resources: limits: cpu: "4" memory: 4Gi nvidia.com/gpu: 1
-
The resource
VirtualService
andDestinationRule
are for routing. With the example above, the model is accessible atHOSTNAME/tfserving/models/mnist
(HOSTNAME is your Kubeflow deployment hostname). To change the path, edit thehttp.match.uri
of VirtualService.
Pointing to the model
Depending where model file is located, set correct parameters
Google cloud
Change the deployment spec as follows:
spec:
selector:
matchLabels:
app: mnist
template:
metadata:
annotations:
sidecar.istio.io/inject: "true"
labels:
app: mnist
version: v1
spec:
containers:
- args:
- --port=9000
- --rest_api_port=8500
- --model_name=mnist
- --model_base_path=gs://kubeflow-examples-data/mnist
command:
- /usr/bin/tensorflow_model_server
env:
- name: GOOGLE_APPLICATION_CREDENTIALS
value: /secret/gcp-credentials/user-gcp-sa.json
image: tensorflow/serving:1.11.1-gpu
imagePullPolicy: IfNotPresent
livenessProbe:
initialDelaySeconds: 30
periodSeconds: 30
tcpSocket:
port: 9000
name: mnist
ports:
- containerPort: 9000
- containerPort: 8500
resources:
limits:
cpu: "4"
memory: 4Gi
nvidia.com/gpu: 1
requests:
cpu: "1"
memory: 1Gi
volumeMounts:
- mountPath: /var/config/
name: config-volume
- mountPath: /secret/gcp-credentials
name: gcp-credentials
volumes:
- configMap:
name: mnist-v1-config
name: config-volume
- name: gcp-credentials
secret:
secretName: user-gcp-sa
The changes are:
- environment variable
GOOGLE_APPLICATION_CREDENTIALS
- volume
gcp-credentials
- volumeMount
gcp-credentials
We need a service account that can access the model.
If you are using Kubeflow’s click-to-deploy app, there should be already a secret, user-gcp-sa
, in the cluster.
The model at gs://kubeflow-examples-data/mnist is publicly accessible. However, if your environment doesn’t
have google cloud credential setup, TF serving will not be able to read the model.
See this issue for example.
To setup the google cloud credential, you should either have the environment variable
GOOGLE_APPLICATION_CREDENTIALS
pointing to the credential file, or run gcloud auth login
.
See doc for more detail.
S3
To use S3, first you need to create secret that will contain access credentials. Use base64 to encode your credentials and check details in the Kubernetes guide to creating a secret manually
apiVersion: v1
metadata:
name: secretname
data:
AWS_ACCESS_KEY_ID: bmljZSB0cnk6KQ==
AWS_SECRET_ACCESS_KEY: YnV0IHlvdSBkaWRuJ3QgZ2V0IG15IHNlY3JldCE=
kind: Secret
Then use the following manifest as an example:
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: s3
name: s3
namespace: kubeflow
spec:
selector:
matchLabels:
app: mnist
template:
metadata:
annotations:
sidecar.istio.io/inject: null
labels:
app: s3
version: v1
spec:
containers:
- args:
- --port=9000
- --rest_api_port=8500
- --model_name=s3
- --model_base_path=s3://abc
- --monitoring_config_file=/var/config/monitoring_config.txt
command:
- /usr/bin/tensorflow_model_server
env:
- name: AWS_ACCESS_KEY_ID
valueFrom:
secretKeyRef:
key: AWS_ACCESS_KEY_ID
name: secretname
- name: AWS_SECRET_ACCESS_KEY
valueFrom:
secretKeyRef:
key: AWS_SECRET_ACCESS_KEY
name: secretname
- name: AWS_REGION
value: us-west-1
- name: S3_USE_HTTPS
value: "true"
- name: S3_VERIFY_SSL
value: "true"
- name: S3_ENDPOINT
value: s3.us-west-1.amazonaws.com
image: tensorflow/serving:1.11.1
imagePullPolicy: IfNotPresent
livenessProbe:
initialDelaySeconds: 30
periodSeconds: 30
tcpSocket:
port: 9000
name: s3
ports:
- containerPort: 9000
- containerPort: 8500
resources:
limits:
cpu: "4"
memory: 4Gi
requests:
cpu: "1"
memory: 1Gi
volumeMounts:
- mountPath: /var/config/
name: config-volume
volumes:
- configMap:
name: s3-config
name: config-volume
Sending prediction request directly
If the service type is LoadBalancer, it will have its own accessible external ip. Get the external ip by:
kubectl get svc mnist-service
And then send the request
curl -X POST -d @input.json http://EXTERNAL_IP:8500/v1/models/mnist:predict
Sending prediction request through ingress and IAP
If the service type is ClusterIP, you can access through ingress. It’s protected and only one with right credentials can access the endpoint. Below shows how to programmatically authenticate a service account to access IAP.
- Save the client ID that you used to
deploy Kubeflow as
IAP_CLIENT_ID
. - Create a service account
gcloud iam service-accounts create --project=$PROJECT $SERVICE_ACCOUNT
- Grant the service account access to IAP enabled resources:
gcloud projects add-iam-policy-binding $PROJECT \ --role roles/iap.httpsResourceAccessor \ --member serviceAccount:$SERVICE_ACCOUNT
- Download the service account key:
gcloud iam service-accounts keys create ${KEY_FILE} \ --iam-account ${SERVICE_ACCOUNT}@${PROJECT}.iam.gserviceaccount.com
- Export the environment variable
GOOGLE_APPLICATION_CREDENTIALS
to point to the key file of the service account.
Finally, you can send the request with this python script
python iap_request.py https://YOUR_HOST/tfserving/models/mnist IAP_CLIENT_ID --input=YOUR_INPUT_FILE
Telemetry and Rolling out model using Istio
Please look at the Istio guide.
Logs and metrics with Stackdriver
See the guide to logging and monitoring for instructions on getting logs and metrics using Stackdriver.
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.